1. **Question Details**

Prove the identity.

\[\tanh(ln \ x) = \frac{x^2 - 1}{x^2 + 1} \]

\[\tanh(ln \ x) = \frac{\cosh(ln \ x)}{x - (e^{ln \ x})^{-1}} = \frac{\frac{e^{ln \ x} - (e^{ln \ x})^{-1}}{2} \cdot \frac{e^{ln \ x} + (e^{ln \ x})^{-1}}{2}}{\frac{x - (e^{ln \ x})^{-1}}{x + x^{-1}}} = \frac{x - 1/x}{x + 1/x} = \frac{(x^2 - 1)/x}{(x^2 + 1)/x} = \frac{x^2 - 1}{x^2 + 1} \]
Use the definitions of the hyperbolic functions to find each of the following limits.

(a) \(\lim_{x \to \infty} \tanh x \)

(b) \(\lim_{x \to -\infty} \tanh x \)

(c) \(\lim_{x \to \infty} \sinh x \)

(d) \(\lim_{x \to -\infty} \sinh x \)

(e) \(\lim_{x \to \infty} \sech x \)

(f) \(\lim_{x \to \infty} \coth x \)

(g) \(\lim_{x \to 0^+} \coth x \)

(h) \(\lim_{x \to 0^-} \coth x \)

(i) \(\lim_{x \to -\infty} \csch x \)
Prove this equation using the method of this example and a previous equation with \(x \) replaced by \(y \).

(a) using the method of the example

Let \(y = \tanh^{-1} x \). Then

\[
= \tanh y = \frac{\sinh y}{\cosh y} = \frac{e^y - 1}{(e^y + e^{-y})/2} \Rightarrow \frac{e^y}{e^y + 1} \Rightarrow xe^{2y} + x = e^{2y} - 1
\]

\[
\Rightarrow 1 + x = \frac{e^{2y} - 1}{e^{2y} + 1} - xe^{2y}
\]

\[
\Rightarrow 1 + x = e^{2y}(1 - x)
\]

\[
\Rightarrow e^{2y} = \frac{1 + x}{1 + x}
\]

\[
2y = \ln\left(\frac{1 + x}{1 - x}\right)
\]

\[
\Rightarrow y = \ldots
\]

(b) using the method of a previous equation

Let \(y = \tanh^{-1} x \). Then \(x \), so we have \(e^{2y} = \frac{1 + \tanh y}{1 - \tanh y} = \frac{1 + x}{1 - x} \)

\[
2y = \ln\left(\frac{1 + x}{1 - x}\right)
\]

\[
\Rightarrow y = \ldots
\]

Solution or Explanation

(a) Let \(y = \tanh^{-1} x \). Then

\[
x = \tanh y = \frac{\sinh y}{\cosh y} = \frac{(e^y - e^{-y})/2}{(e^y + e^{-y})/2} \Rightarrow \frac{e^y}{e^y + 1} \Rightarrow xe^{2y} + x = e^{2y} - 1 \Rightarrow 1 + x = e^{2y} - xe^{2y} \Rightarrow 1 + x = e^{2y}(1 - x)
\]

\[
e^{2y}(1 - x) \Rightarrow e^{2y} = \frac{1 + x}{1 - x} \Rightarrow 2y = \ln\left(\frac{1 + x}{1 - x}\right) \Rightarrow y = \frac{1}{2} \ln\left(\frac{1 + x}{1 - x}\right).
\]

(b) Let \(y = \tanh^{-1} x \). Then \(x = \tanh y \), so from Exercise 18 we have

\[
e^{2y} = \frac{1 + \tanh y}{1 - \tanh y} = \frac{1 + x}{1 - x} \Rightarrow 2y = \ln\left(\frac{1 + x}{1 - x}\right) \Rightarrow y = \frac{1}{2} \ln\left(\frac{1 + x}{1 - x}\right).
\]

4. Find the derivative. Simplify where possible.

\[
g(x) = \cosh(\ln x)
\]

\[
g'(x) = \ldots
\]

Solution or Explanation

Click to View Solution
5. **Question Details**

Find the derivative. Simplify where possible.

\[y = x \coth(6 + x^2) \]

\[y'(x) = \]

Solution or Explanation

Click to View Solution

6. **Question Details**

Find the differential of each function.

(a) \[y = x^2 \sin 4x \]

\[dy = \]

(b) \[y = \sqrt{5 + t^2} \]

\[dy = \]

Solution or Explanation

Click to View Solution

7. **Question Details**

Find the linearization \(L(x) \) of the function at \(a \).

\[f(x) = x^{1/2}, \ a = 25 \]

\[L(x) = \]

Solution or Explanation

Click to View Solution

8. **Question Details**

Compute \(\Delta y \) and \(dy \) for the given values of \(x \) and \(dx = \Delta x \). (Round your answers to three decimal places.)

\[y = \frac{6}{x}, \ x = 4, \ \Delta x = 1 \]

\[\Delta y = \]

\[dy = \]

Sketch a diagram showing the line segments with lengths \(dx, dy, \) and \(\Delta y \).
Solution or Explanation

\[y = f(x) = \frac{6}{x}, \ x = 4, \ \Delta x = 1 \Rightarrow \]

\[\Delta y = f(5) - f(4) = \frac{6}{5} - \frac{6}{4} = -0.3 \]

\[dy = -\frac{6}{x^2}, \ \Delta x = -\frac{6}{4^2}(1) = -0.375 \]
9. Use differentials to estimate the amount of paint needed to apply a coat of paint 0.05 cm thick to a hemispherical dome with diameter 58 m. (Round your answer to two decimal places.)

\[m^3 \]

Solution or Explanation

Click to View Solution

10. Find the linearization \(L(x) \) of the function at \(a \).

\[f(x) = \cos x, \ a = \frac{5\pi}{2} \]

\[L(x) = \]

Solution or Explanation

Click to View Solution

11. A trough is 12 ft long and its ends have the shape of isosceles triangles that are 4 ft across at the top and have a height of 1 ft. If the trough is being filled with water at a rate of 9 ft\(^3\)/min, how fast is the water level rising when the water is 9 inches deep?

\[\text{ft/min} \]

Solution or Explanation

Click to View Solution
Two carts, A and B, are connected by a rope 39 ft long that passes over a pulley P (see the figure). The point Q is on the floor $h = 12$ ft directly beneath P and between the carts. Cart A is being pulled away from Q at a speed of 2 ft/s. How fast is cart B moving toward Q at the instant when cart A is 5 ft from Q? (Round your answer to two decimal places.)

ft/s

Solution or Explanation
Click to View Solution